Tracing Cosmic Structure Evolution and Testing Cosmological Models with X-ray Galaxy Clusters

Hans Böhringer, MPE Garching

Dark Matter & Dark Energy

- Only 4% of the matter-energy density of the Universe is made of matter we understand
- The unexplained Dark Matter and the Cosmic Reacceleration provide a challenge for fundamental physics ◊ explanations are emerging at every frontier of physics:

Quintessence (first example – provides nomenclature)

Theory of gravitation

Higher dimensions

String Theory

Holographic principle

Interaction of DE and DM

 What insights and constraints can observational cosmology provide?

Overview

- Cosmologies with Dark Energy (described by a simple parametrization of the equation of state of DE)
 and principle of cosmological tests with clusters
- Cosmological tests with nearby clusters
- Cluster abundance as function of z in various cosmologies
- What types of distant clusters need more detailed study
- Requirements for an X-ray observatory to allow these studies

The Observerd Structure in the Universe is influenced by DM and DE

- **θ** The expansion dynamics of the Universe
 - \Diamond determines also the metric: $D_{l}(z)$, dVol(z), ...
- The density evolution controlles the gravitational growth of fluctuations g(z)
- θ Interaction or non-intercation effects between the different components are important
 - The nature of Dark Matter determines the form of the fluct. spectrum
 - Dark matter follows the gravitational fluctuation growth
 - Vacuum energy fields do not follow gravitational clumping on small scales
 - interaction of DM and DE ?

The Influence of w on Cosmic Evolution

$$\frac{\dot{a}^2}{a^2} = \frac{8\pi}{3}G\rho_x - \frac{kc^2}{a^2} + \frac{1}{3}\Lambda c^2$$

$$\frac{\dot{a}^2}{a^2} = \frac{8\pi}{3}G\rho_x - \frac{kc^2}{a^2} + \frac{1}{3}\Lambda c^2 \qquad \qquad \frac{\dot{a}^2}{a^2} = H^2 = \frac{8\pi}{3}G\sum \rho_x - \frac{kc^2}{a^2}$$

$$\frac{\ddot{a}}{a} = -\frac{4\pi}{3}G\left(\rho + 3\frac{P}{c^2}\right) + \frac{1}{3}\Lambda c^2 \qquad \frac{\ddot{a}}{a} = -\frac{4\pi}{3}G\sum \rho_x \left(1 + 3w\right)$$

$$\frac{\ddot{a}}{a} = -\frac{4\pi}{3}G\sum \rho_x (1+3w)$$
on
$$x a^{-3(1+w)}$$

$$\approx -1$$

Change of density with expansion $\rho_m \propto a^{-3}$ $\rho_x \propto a^{-3(1+w)}$

$$\rho_m \propto a^{-3}$$

$$\rho_r \propto a^{-3(1+w)}$$

radiation:
$$w = \frac{1}{3}$$
 $\rho_{\gamma} \propto a^{-4}$

$$\rho_{\nu} \propto a^{-4}$$

$$\Lambda$$
 - term: $w = -1$ $\rho_{\Lambda} = const.$

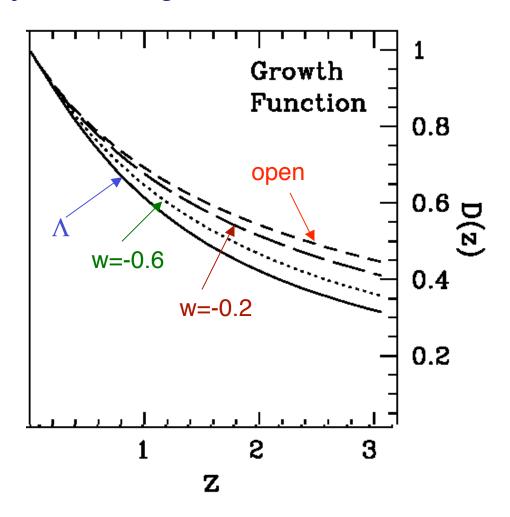
$$\rho_{\Lambda} = const.$$

$$W = W_0 + W_1^* Z$$

$$\rho_m / \rho_x \propto (1+z)^{-3w}$$

 $\rho_m/\rho_x \propto (1+z)^{-3w}$ small influence of ρ_x in the past

Luminosity distance:


$$D_L^2(z) = \frac{L}{4\pi F}$$

$$\zeta(x) = \left\{ \sinh(x), x, \sin(x) \right\}$$

$$D_{L}(z) = \frac{c}{H_{0}} \frac{(1+z)}{\left|\Omega_{R}\right|^{1/2}} \xi \left\{ \left|\Omega_{R}\right|^{1/2} \int_{0}^{z} \left[\sum_{i} \Omega_{i} (1+z')^{3(1+w_{i})} + \Omega_{R} (1+z')^{2}\right]^{-1/2} dz' \right\}$$
ConX-XEUS Meeting 24.2,2005

The Influence of w on Cosmic Evolution

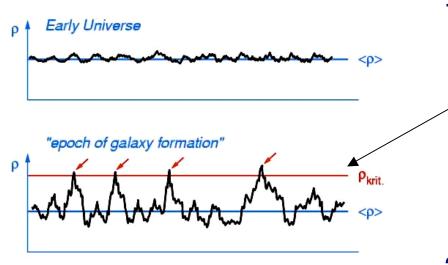
Density fluctuation growth:

Different Cosmological Tests with Galaxy Clusters and Cluster Populations

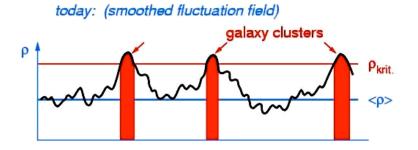
- 1. Galaxy Clusters as Standard Candles (♦ baryon fraction)
- 2a. G.C. as Tracers of the Evolution of Large-Sacle Structure (♦ mass function evolution)
- 2b. Measuring the Large-Scale Structure Matter Distribution (♦ density fluctuation power spectrum)
- 3. Using the Depence of Cluster Structure in Detail in Cosmology

Standard Candles

1. Hubble Diagram: m(z) against z


$$m_{SN} \propto 5 \log D_L(z) + const. \{+ K - corr(z)\}$$

 $m_{SN}(z) = f(D_L(z), z)$

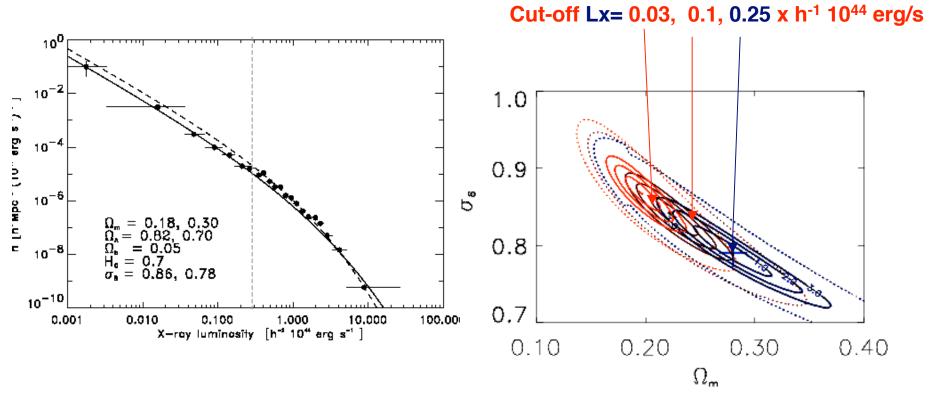

2. Cluster baryon fraction:

$$M_{grav} \propto D_{\theta} = D_L (1+z)^{-2}$$

 $M_{gas} \propto D_{\theta}^{5/2} \propto D_L^{5/2} (1+z)^{-5}$

$$\Rightarrow f_b = f(D_L^{3/2}, z)$$

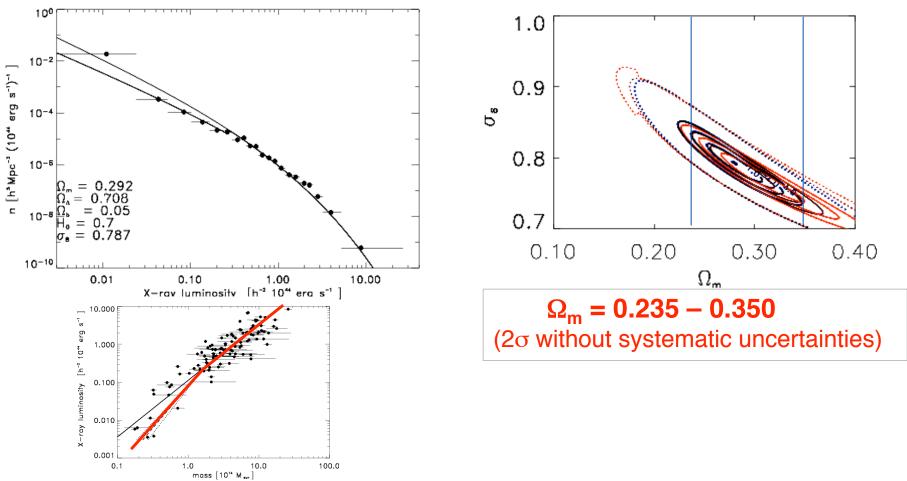
The Ideal Experiment: Cosmic Structure Evolution


. The cosmology determines the growth of the matter density fluctuation amplitude (with time or z) of which the cluster mark the peaks and provide a sensitive statistical measure.

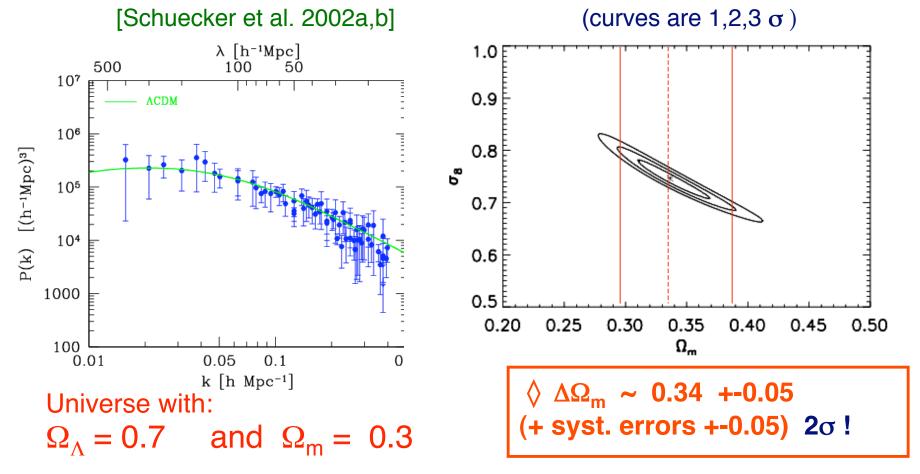
$$g(z) = f(\Omega_m, \Omega_\Lambda, w_0, w_1)$$

2. In the observations the number counts as a function of z are observed which also includes the volumina of dz shells – which are cosmology dependent

$$\frac{dVol(z)}{d\Omega dz} = f(\Omega_m, \Omega_\Lambda, w_0, w_1)$$

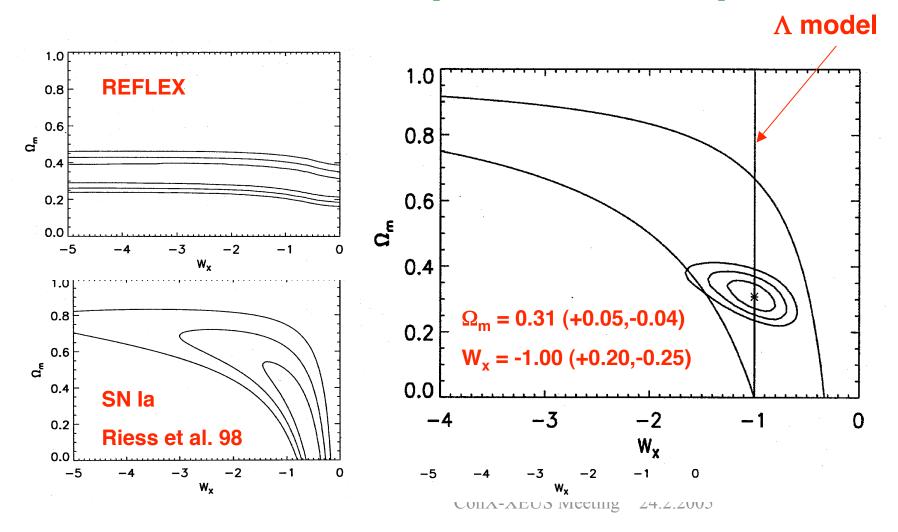

Cosmological Constraints from Nearby Cluster X-ray Luminosity Function

Perfect prediction of the Concordance Cosmological Model for the Luminous Clusters from the REFLEX Sample


Fit with a Broken Power-Law for the M-L Relation

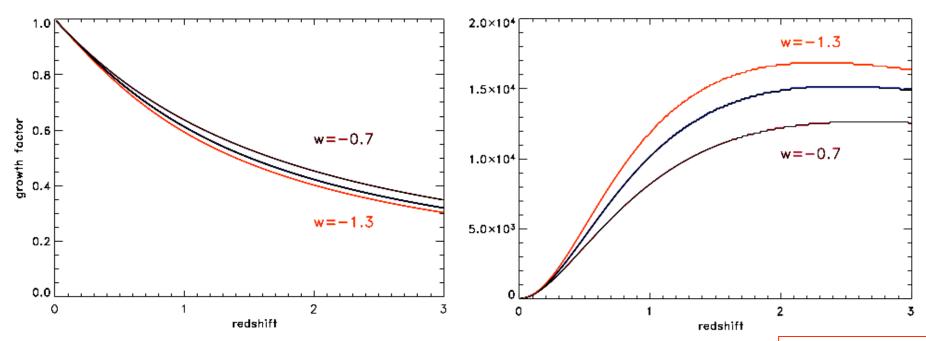
The whole REFLEX data set can be reconciled with the concordance model if we assume a slight change of the M-L relation at small masses:

Constraints on Cosmological Models and $\Omega_{\rm m}$ from the *REFLEX* Cluster Survey


Combining the REFLEX cluster abundance with the 3dim power spectrum

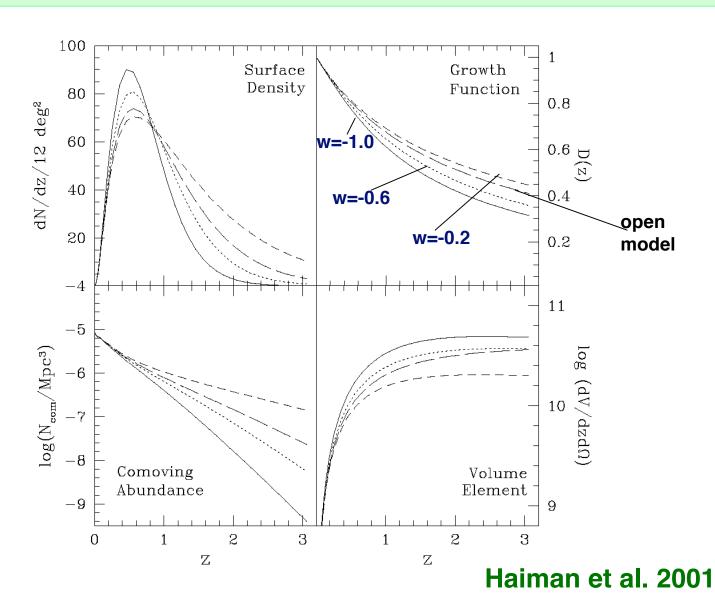
The large-scale distribution and cluster abundance are consistent and can be combined to improve the constraints!

Combined Constraints REFLEX & SN Ia on $\Omega_{\rm m}$ and $W_{\rm x}$

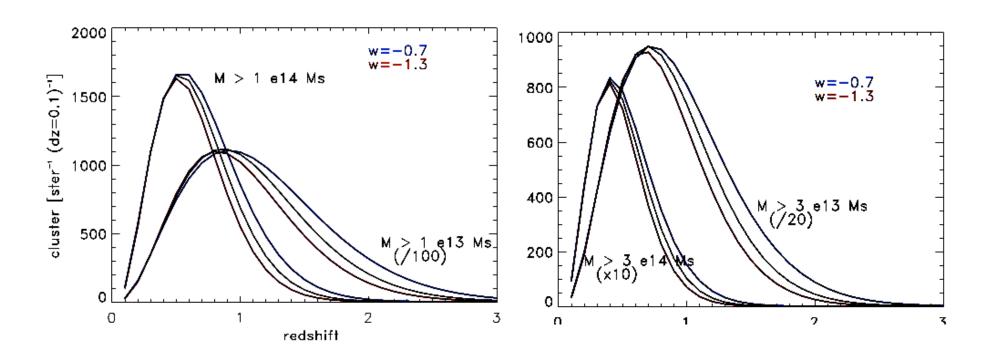

Data from REFLEX and SN observations of Riess et al. 1998 and Perlmutter et al. 1999 [Schuecker et al. 2002]

Effects of a constant w-Parameter

growth factor

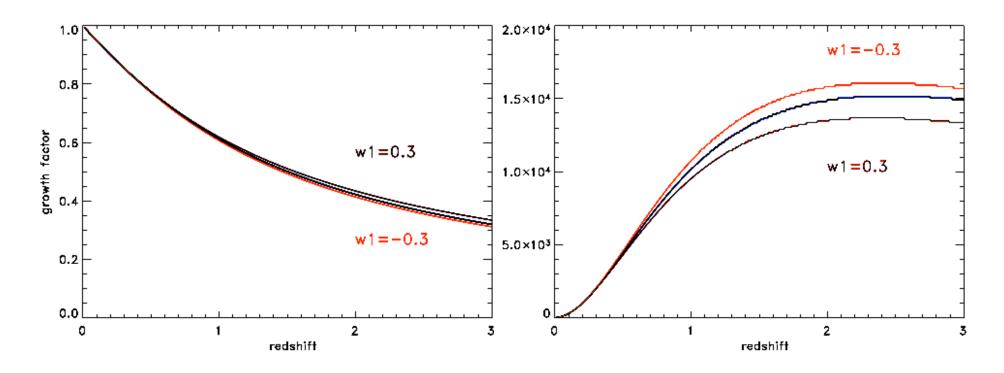

shells of comoving volumes

- With a larger $\,w$, structure evolution proceeds more slowly (a bit similar as for low $\,\Omega_m^{}\,)\,\,\big\langle\,$ more clusters at high redshift !
- with a larger w the redshift shell have smaller volumina (this compensates partly the higher g(z) in its increase of the cluster abundance


$$H_0 = 70 \text{ km/s/Mpc}$$

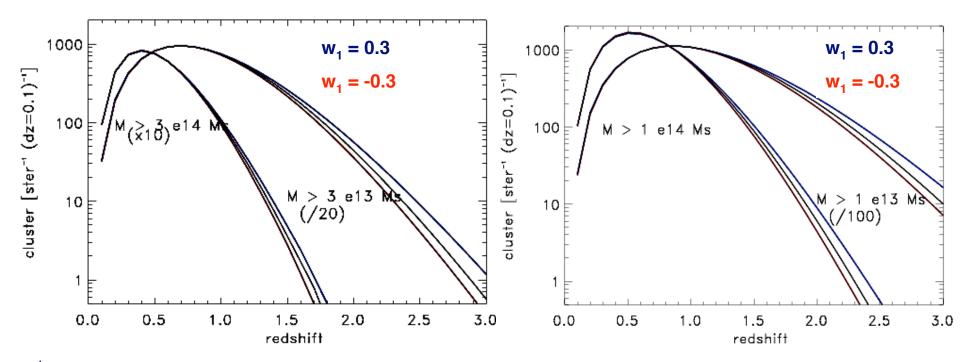
 $\Omega_{\rm m} = 0.3$
 $\Omega_{\Lambda} = 0.7$
 $\sigma_8 = 0.79$
 $n = 1.0$

Effect of Changing w = constant


Evolution of the Cluster Mass Function

Differential comoving cluster abundance (> Mass_{limit}) ster⁻¹ dz=0.1⁻¹

♦ There are more distant clusters for small w!


Effects of a Changing w(z) Parameter

• Again the model with higher w (positive w1) has more distant clusters per volume element and more of the more massive clusters per redshift shell.

Evolution of the Cluster Mass Function

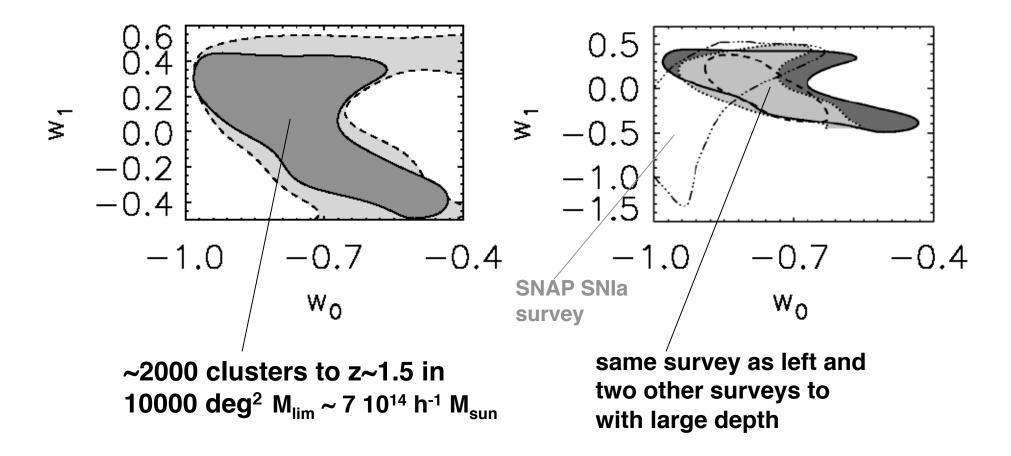
Differential comoving cluster abundance (> Mass_{limit}) ster⁻¹ dz=0.1⁻¹

♦ There are more distant clusters if w evolves to larger values (smaller negative) values.

 \lozenge Measurement will be challenging 30-50% differences in abundance for $z \ge 2$ ---- needs good knowlegde of cluster masses

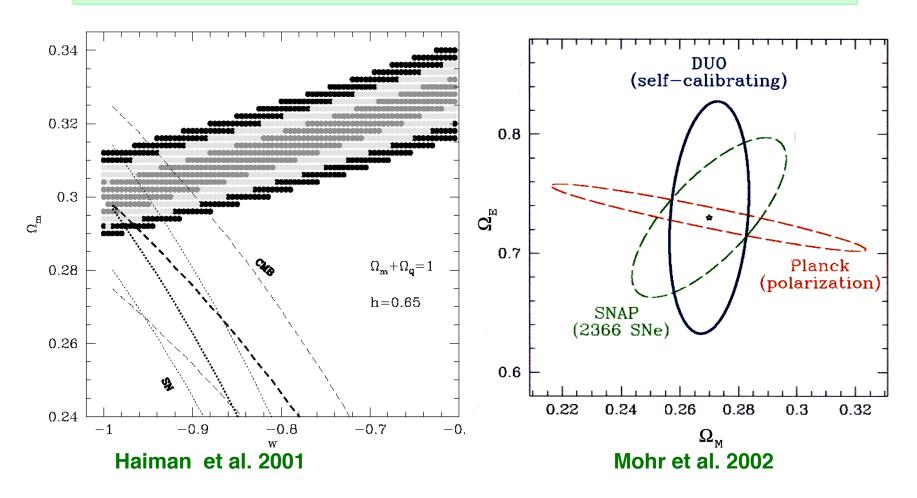
Possible Constraints on w

Work by Majumdar & Mohr 2003, 2004 - for DUET, SPT, Planck Surveys (cluster population out to ~ 1.5):


$$\Delta w = 4-5\%$$
 20-40% 10-20% 4-6% cluster relations rel. unknown + P(k) +P(k) & follow-up known

(assuming 30% accuracy in mass observing relations in follow-up studies)

This was ment to be completed in ~ 2010 - now we should aim for a more ambitious goal to probe for time variability of w


Constraints on the w(z) - Parameter

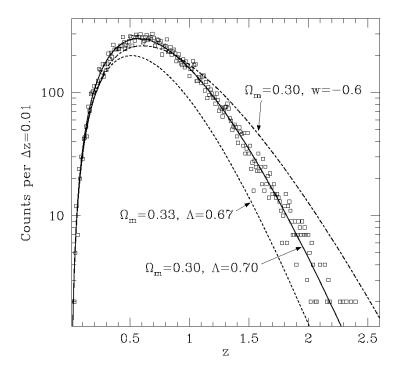
from an SZ survey

Weller et al. 2002 Phys. Rev. Let.

Comparison to other surveys

Tests involving the study of the growth of large-scale structure (tests of the dynamics of gravitational instabilities) provides constraints <u>complementary</u> to the geometry and CMB studies.

How many Test Objects Do We Find?


Redshift	mass	clusters /100 deg2	X-ray luminosity
z > 2	> 10 ¹⁴ M _{su}	n 0.5	10 ⁴⁴ erg/s
	$> 3 \ 10^{13} \ \mathrm{M_s}$	un 100	1.5 10 ⁴³ erg/s
	$> 10^{13} \mathrm{M_s}$	un 2000	3-4 10 ⁴² erg/s
z > 2.5	$> 3 \ 10^{13} \ \mathrm{M_s}$	_{un} 15	2 10 ⁴³ erg/s
	$> 10^{13} \mathrm{M_s}$	un 600	3-5 10 ⁴² erg/s
z > 3	> 3 10 ¹³ M _s	_{un} 1	2.7 10 ⁴³ erg/s
	$> 10^{13} \mathrm{M_s}$	un 100	4-6 10 ⁴² erg/s

Requirements for Cosmological Studies

- 1. To find a sufficiently large sample of distant clusters we have to rely on systematic X-ray and SZ surveys
 - XMM archive and DUO type survey will provide 100s of clusters at z=1 .. 1.5 -- mission like DUET or better will bring us to $z\sim2$
 - planned SZ surveys are very promising for the finding of distant clusters due to the non-dimming surface brightness
- 2. We need to know the structural properties and masses of the clusters found by other means very precisely (~ as precisely as we know the present day cluster properties)
- ♦ The latter is the challenge for ConX/XEUS: precise cluster characterization at z ~ 2

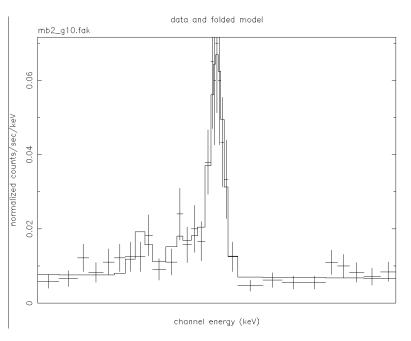
Can we Really Find Distant Clusters ?

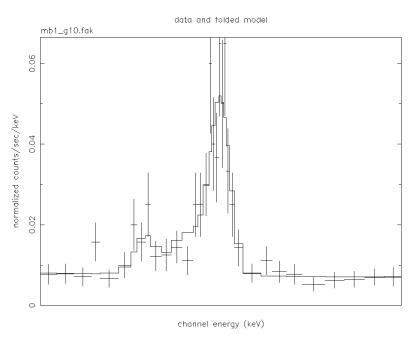
1.

Expected cluster counts in the 4000 deg² SZ survey with the South Pole Telescope

[Ruhl et al. 2004 astro-ph/0411122]

2. Redshift record breaking luminous X-ray cluster found in the XMM archive by MPE-ESO-AIP collaboration \Diamond Announcement by Chris Mullis et al. on 2. 3. 2005 in Kona!

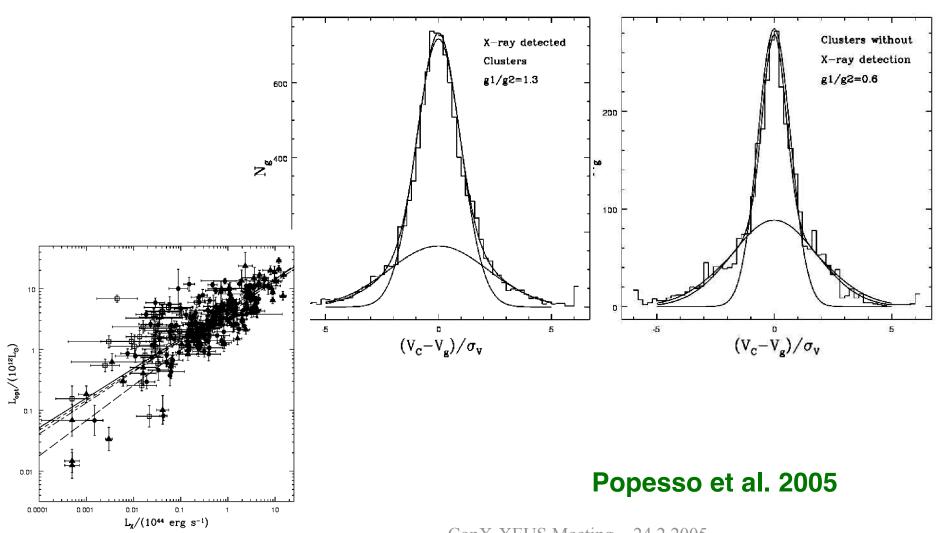

Task for ConX-XEUS

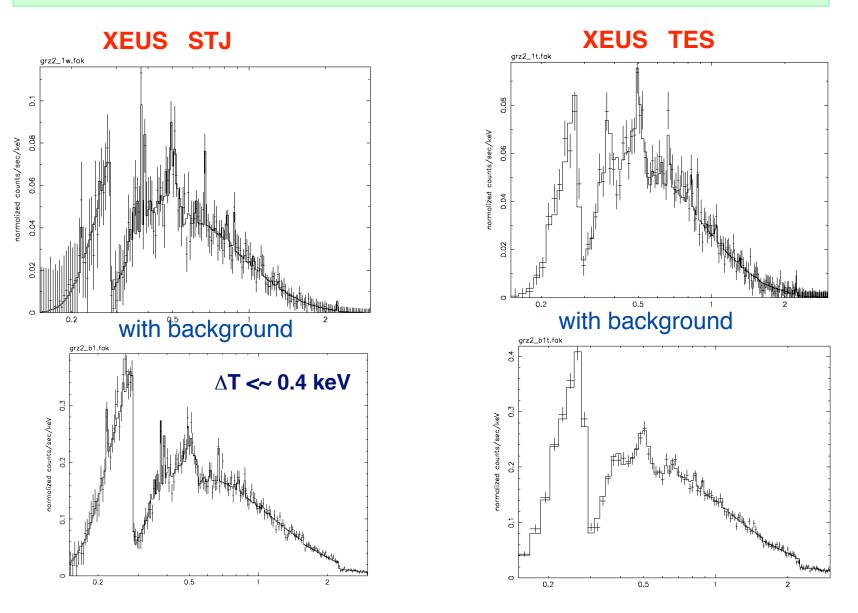

To best characterize:

- abundant clusters at $z \sim 2$ with $M \sim 3 \cdot 10^{13} \text{ h}^{-1} M_{\text{sun}}$
- more rare clusters ,, $M \sim 10^{14} \text{ h}^{-1} \text{ M}_{\text{sun}}$

Spectroscopy as Temperature and Structure Diagnostics

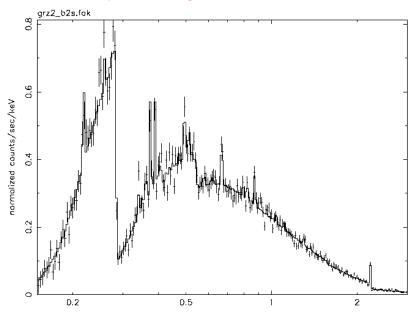
Fe-line in the Coma Cluster ICM in a simulated ASTROE-2 observation of 80 ksec for 100 and 300 km/s turbulence



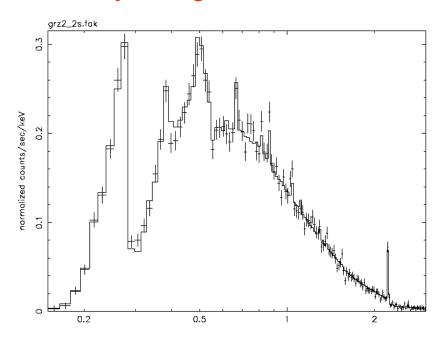

3-fold way of temperature determination:

1. Spectral fits, 2. Line ratios, 3. Line width

Structure Discrimination Learned from X-ray/SDSS Comparison for Nearby Clusters



Spectra of a 3 10^{13} M_{sun} Group at z ~ 2



Spectra of a $z \sim 2$ Cluster (M $\sim 10^{14}$ M_{sun})

100 ks observation with STJ incl. sky background

100 ks observation with TES no sky background

Temperature measurement to better than $\Delta T = 0.1 \text{ keV}$

Conclusions

 XEUS is well fit to provide a good characterization of galaxy clusters out to z >~ 2 even so the very massive and luminous clusters are not any more found at these redshifts

By pushing the limits t z~2 we get a larger leverage to look for the time variation of w

All cosmological tests needed to break degeneracies in $\Omega_{\rm m},\,\Omega_{\Lambda},\,{\rm w}_0,\,{\rm w}_1,\,+\,....$

1. These clusters are not only interesting as probes of cosmology and structure growth but also as laboratories for the evolution of the intergalactic medium and the galaxy population ◊ talks by Arnaud, Mushotzky, Kaastra!

Thus such distant cluster observations will serve several very important purposes (with same observations requirements)

Requirements

- High collecting power at least current XEUS effective area ~ 10m²
- 2. Most crucial: low back ground instrumental and partical background have to be less than the X-ray sky background (as for ROSAT PSPC) !!!
- 3. Sufficient field-of-view > 5 arcmin for very distant clusters ~10 arcmin for redshift range z= 0.5 1
- 4. Reasonable angular resolution: 2-4 arcsec
- 5. Good spectral resolution: 3 eV or better